
1

TAALK: Server-Load Aware Network Load
Balancing

Alaleh Azhir, Tony Yang, Lucy Zhang, Kristin Yim, and Angelo Olcese

Abstract—TAALK is a system designed to improve server load
balancing by considering the endpoint servers’ load when making
initial routing decisions. Previous efforts in this space, such as
consistent hashing methods, do not consider server load when
making these decisions. In order to implement our server-load
aware solution, we implemented a sampling algorithm which
uses two hash functions to choose two different endpoint servers.
The rest of the packets in the flow are routed to the endpoint
server that responds back first. By utilizing this algorithm, we
are able to better distribute the load between endpoints. To test
the effectiveness of TAALK, we created a Cypherpath topology
and contrasted it with Maglev, Google’s architecture. We evaluate
both implementations using individual flow and job completion
time. Our results suggest that while Maglev does better on
average when measuring individual flow’s completion times, for
applications that require looking at all flows’ completion times
to measure the job completion time, our application is up to 30
times faster under high loads. We suggest further exploration
using larger scale topologies and higher traffic to look at the
scalability of our solution. We believe that in larger topologies,
our solution would show higher speedups.

I. INTRODUCTION

With the immense growth of cloud computing, the demand
for large scale multi-tenant cloud environments has soared.
Popular services such as Gmail receive millions of queries
a second from all over the world which puts an incredible
stress on the underlying datacenter infrastructure [1]. To deal
with this magnitude of load, these services are hosted across
many servers in different clusters throughout the globe [1]. It is
important that within these clusters, traffic is spread evenly to
endpoint servers such that no single server is overloaded. The
key to achieving this is the multi-tenant load balancers which
decide how traffic is routed. From current estimates, these load
balancers are involved with nearly all external traffic and half
of internal datacenter traffic [2], so their importance is evident.

Network load balancers typically sit between routers and
endpoint servers, and route each packet to an endpoint server
and then forward it accordingly, as shown in Figure 1. These
load balancers are usually dedicated hardware devices [3] [4].
However, this approach has some downsides. Namely, dedi-
cated hardware devices make scaling extremely difficult; as
a service grows, new devices need to be installed. A better
approach, is to implement these load balancers as a distributed
software system running on commodity nodes in a datacenter
as done by Google’s Maglev. This allows for fast scaling
as we can introduce new nodes very easily and for a low

Alaleh Azhir is with Biomedical Engineering, Johns Hopkins University
Tony Yang, Lucy Zhang, Kristin Yim, Angelo Olcese are with Computer

Science, Johns Hopkins University

cost, and we have full control over the system to edit and
test configurations [1]. Along with the great potential that we
are afforded by software based load balancers comes a great
complexity of implementation. One of the biggest challenges
to address in the configuration is the idea of connection
consistency [1], which means that packets from the same flow
must always be routed to the same endpoint server.

Fig. 1. Datacenter packet flow: Some endpoint hosts may have higher load
than others.

Previously, load balancing solutions have worked to spread
traffic equally to all available endpoint servers using hash
functions and ECMP without measuring each server’s load.
While this helps to ensure that each endpoint server receives
new flows with relatively similar frequency, it does not account
for the magnitude of load associated with a flow. Some flows
are longer than others, requiring more processing from the
endpoint server. Or simply, some flows will require more work
from the endpoint server depending on the nature of a request.

TAALK presents a novel solution to software network load
balancing which is server load-aware. By building on previous
solutions Maglev [1] and Ananta [2], we have implemented
a load balancer which significantly decreases the chance of
routing flows to endpoint servers which is already under heavy
load. Our solution seeks to satisfy four properties: per-flow
consistency, low tail latency, low network overhead, and low
load on balancers. We utilize two hash functions to route Syn
packets to two endpoint servers, and then based on whichever
server responds first, the rest of the packets in that flow are
routed to that server. This ensures per-flow consistency as all



2

future packets of the flow are sent to the same endpoint server.
By minimizing utilization of slow, over-utilized endpoints
and picking the faster endpoint server, we seek to minimize
tail latency. Additionally, the proposed solution increases the
network overhead by adding few additional syn+ack packets
from the rejected endpoint server to the user. Once a load
balancer has decided which endpoint to send a flow to, we
minimize the load on the balancers by bypassing the balancers
when sending packets from endpoint servers to the user by
routing directly from the endpoint server to the router (an
optimization adopted from Maglev as shown in Figure 2).
Each load balancer will have the same two hash functions
and has the ability to compute to which endpoint server the
flows should be routed. Therefore, adding or removing a load
balancer does not affect the rest of the load balancers.

Fig. 2. Maglev packet flow with balancer bypass [1]

We simulated this design and compared it to a Maglev
implementation on the same network topology. We believe
that, as the system is scaled up, the benefit of server-load
aware balancing will greatly outweigh the latency introduced
by the extra load on the network. Furthermore, we observed
that the job completion time (measured by the maximum flow
completion time under each load) was up to 8 times faster in
our solution compared to Maglev.

II. RELATED WORKS

Current load balancers tend to use consistent hashing, and
fail to take into account a server’s current load before sending
packets. In Maglev [1], endpoints calculate a list of the
hash table entries they would prefer, and each endpoint takes
turns picking their top choices until the hash table is full.
This method allows a datacenter to have multiple active load
balancers, instead of an active-passive pair. In addition, this
system makes it easy to add, remove, and restart balancers.

In Ananta’s architecture, there are three main components,
Ananta Manager, Multiplexers, and Host Agents, as shown in
Figure 3 [2] . The Ananta Manager coordinates state across
Agents and Multiplexers. The Multiplexers are a scalable set
of dedicated servers for load balancing. Host Agents are co-
located within destination servers, and they provide stateful
NAT functionality. Like Maglev, Multiplexers in Ananta also
use consistent hashing to forward incoming packets to servers.
Multiplexers also keep track of their top-talkers - VIPs with
the highest rate of packets. Once a Multiplexer detects that

there is packet drop due to overload, it informs the Ananta
Manager about both the packet drop and the current top-talkers
(endpoints with the highest packet rates). The Ananta Manager
then withdraws the top-talker VIP from all Multiplexers,
creating a black hole for the VIP. This ensures there is minimal
collateral damage due to Multiplexer overload.

Fig. 3. The Ananta Architecture [2]

Dean et al. discusses the idea of tail latency and motivates
load-aware load balancing [5]. Tail latency occurs when a
job runs in a data center with low latency most of the
time, but with high latency a rare percentage of the time.
Despite happening at low probability, this latency impacts the
usability of interactive tasks. One of the solutions that the
paper proposes is “hedge requests,” and this is similar to the
design we propose in this paper in that it sends multiples
requests. A client sends a request to what it believes to be
the best replica, and then falls back on a second request after
some delay. Then, the client can cancel requests after the first
result is received. Rather than sending the second request after
some delay, we send multiple requests to replicas, and choose
one when establishing the connection.

III. DESIGN AND METHODS

A. Initial Design: ∆t

Our first design idea was to use packet processing time to
estimate the load of each endpoint server. At initialization, we
assume all servers have ∆t = 0. Then, for each new packet that
comes to the load balancer, we first check our match/action
table to see if we have already seen other packets of the same
flow. If the packet is the first of a new flow, we pick the
server with the smallest ∆t value (or randomly between the
servers sharing the smaller ∆t value) to send the packet to. As
soon as a server is designated for the first packet of a flow,
we send the information regarding the packet header and its
designated server to the control plane. We require the packets
to be returned from servers back to load balancers before
traveling to the user. When a packet gets returned from server,
we update the ∆t value of that particular server by subtracting



3

the sent time from the received time of that packet. Moreover,
the load balancers will not be sharing the ∆t values as that
can introduce latency, however, we expect that the ∆t values
will be similar across all load balancers.

Also, ∆t may not be an accurate measurement of each
server’s load. In Figure 4, we see that this technique does
not accurately represent the load. For example, consider the
100th packet to enter an endpoint’s queue and no packets come
afterwards. The endpoint would tell the load balancer that it
has high load, which was true at the time when the packet
came in, but is no longer true once the packet is processed. The
∆t model does not use consistent hashing, hence introducing
overhead as a centralized control layer needs to keep track of
active flows.

Fig. 4. Inaccurate representation of server load using ∆t. The load balancer
will think that this endpoint server has high load based on packet A’s ∆t even
though its queue is empty.

B. Final Design: Sampling

Instead of implementing the ∆t method, we used an alter-
native sampling method. We used servers instead of switches
for our load balancers. Instead of consistent hashing in load
balancers as proposed by Maglev, our load balancers are each
equipped with 2 different hash functions. Upon receiving the
first packet of a flow, our load balancer duplicates the packet
and sends it to both endpoint servers (each corresponding to
1 hash function). Each server is also equipped with the 2
different hash functions. Upon receiving the first packet each
endpoint server hashes the header to figure out whether it
is corresponding to the first or second hash function. Upon
finishing the computation, we could use a reserved bit [6]
in the packet header which will get overwritten for the first
packet by the endpoint server to indicate whether to use the
first or second hash function for the future packets of the
same flow (this choice was changed to using timestamp option
of TCP during implementation). This ensures consistency.
Although this method will have an overhead (by duplicating
all syn packets and sending the additional Syn+Ack from the
slower endpoint server), we predict that this congestion will
be negligible.

One design change we made during implementation was
the use of the reserved bit. We initially wanted to overwrite
the reserved bit in the packet header to indicate which hash
function to use for future packets of the same flow. However,
in order for our design to scale, we would have to rely on the
assumption that the user does not ever modify the reserved bit.
We realized that this assumption is not always realistic, and we
cannot guarantee what the user does. Therefore, we decided to
use the Timestamp option [6], [7] in the TCP header instead.
In our final design, we chose two prime numbers, 65537 and
65539, and each corresponds to one of our hash functions.
After an endpoint server computes which hash function was
used, it will increase the Timestamp on the packet header to a
multiple of whichever prime number corresponds to the hash
function used. We chose these two prime numbers because the
first number that is a multiple of both is too large to fit in the
Timestamp option.

IV. IMPLEMENTATION

Code repository: https://github.com/cloud-sp19/Project/

A. Initial Implementation

Initially, we looked at a few different options for imple-
mentation of a simulation: Mininet [8], Omnet++ [9], and the
INET [10] framework. Mininet was the most intuitive to use,
but because it is geared towards SDN, we would have to create
a controller for the network and implement the load balancers
as OpenFlow switches instead of servers, which is different
from Maglev and our design.

Using Omnet++ and INET, we were able to implement
a fattree structure, as shown in Figure 5, that could be
parameterized to different scale. We were also able to establish
a TCP connection between a user and an endpoint and send
packets. However, as we started trying to create our own TCP
applications, we started having more trouble with connecting
to the INET code and being able to access the packets’
information. We found that the documentation for Omnet++
was much more clear than the documentation for INET. We
were unable to implement Equal Cost Multi Path (ECMP)
and Maglev load balancing. At the end we decided to use
CypherPath [11] instead, even though we would not be able
to simulate our architecture at a very larger scale.

B. Final Implementation

For our final implementation, we used CypherPath to imple-
ment both TAALK and Maglev. We used the same topology
for both TAALK and Maglev, as shown in Figure 6. Our im-
plementation contains 6 different machines: 1 User, 1 Router,
2 Load Balancers, and 2 Endpoint Hosts.

1) User: The user is responsible for sending traffic to our
endpoint servers. It uses multithreading to simultaneously send
between 1 to 100 flows. Each flow is identical in size and
about 6 packets long. Furthermore, the user replicates this
process by repeating it 10 times. From here on we refer to
x simultaneous flows as load x (used for the figures). The
user is also responsible for calculating flow completion time



4

Fig. 5. Fattree implementation in Omnet++ with k=2 and 4 endpoints. The
red circle shows a TCP ACK packet.

Fig. 6. Topology of our implementation in CypherPath.

for each flow. It computes the difference in time from when a
TCP connection is first created and when it is closed. In our
implementation, each simulation is repeated ten times.

2) Router: The router has two different parts. First, it must
route incoming packets from the user to the load balancers.
When it receives a packet from the user, it changes the
destination IP of the packet to one of the load balancers
randomly to partially simulate ECMP (but we do not use
hashing). Second, the router must route packets from the
endpoint servers to the user. When it receives these packets, it
rewrites the source IP with the router IP to mask the endpoint
IPs.

3) Load Balancer: The only part of our architecture that
varies between TAALK and Maglev is the Load Balancer.
In our Maglev simulation, when the load balancer receives

a Syn packet (the first packet of a flow), it picks one endpoint
host randomly. When it receives a packet from a flow it has
already seen, it uses the timestamp option in TCP to see which
endpoint server to send the packet to, ensuring consistency. In
our TAALK simulation, when the load balancer receives a Syn
packet, it sends the packet to both endpoint hosts. Similar to
the Maglev, for all other packets besides the Syn it uses the
timestamp option to see where to send the packet.

4) Endpoint Server: The two endpoint hosts in our im-
plementation are DNS servers. When they receive a packet,
normally they would resolve the domain name, but here they
just send back refusals. Once the endpoint host receives a
packet, it increases the timestamp option of TCP to reach
a multiple of one of the prime numbers. In this simulation,
Endpoint 1 and Endpoint 2 will increase the timestamps to
65537 and 65539 respectively.

V. EVALUATION AND DISCUSSION

As you can see inFigure 7, the average completion time of
our design is shorter for load size between 8 and 25 and longer
for the rest. We predict this could be potentially caused by the
network overhead due to the additional syn+ack packet sent
from the other endpoint host to the user and the duplication of
the syn packets. The peak could indicate the congestion due
to handling too many flows simultaneously. Moreover, as we
expected the flow completion time increases when the load is
increased.

Fig. 7. Average individual flow completion time of our design compared to
Maglev

In Figure 8, we can see that Maglev despite having smaller
flow completion time has many more outliers than our design,
leading to increased tail latency. This means that for appli-
cations that require all the flows of a job to be completed,
the job completion time would be much higher in Maglev
compared to our design. This graph also has its y-axis cut off
at 5 in order to make plots more visible, however, Maglev had
certain flows that took up to 32 seconds as seen in Figure 9. In
Figure 9, we can see that TAALK drops job completion time
by a factor of 30 for load 88. Furthermore, TAALK shows
much less fluctuation for tail latency compared to Maglev,
leading to better predictability.

We graphed the distribution of individual flow completion
time for load 82 (Figure 10), 83 (Figure 11) and 93 (Fig-
ure 12). We see that for load 82, the distributions are separate
indicating that most of the flows in Maglev took a much



5

Fig. 8. This shows boxplots of the individual flow completion time at each
load. The y-axis has been cut at 5s for better visibility. We see Maglev has
many more outliers than TAALK.

Fig. 9. Maximum individual flow completion time of our design compared
to Maglev.

shorter time to complete than they did in TAALK, however,
there is a Maglev flow that took ~15s. This shows that its
corresponding job completion would still be ~8 times slower
than it is in TAALK. Furthermore, since around load 80 we see
a peak in average flow completion time of TAALK in Figure 7,
we can conclude even when the network is congested, TAALK
seems to function better for job completion time. In Figure 11,
we see some overlap between TAALK and Maglev. This is an
example where Maglev has better performance and completes
both flows and jobs faster probably due to its lower network
overhead. Lastly, in Figure 12, we see that the distributions
overlap, although Maglev again shows high tail latency. At
the same time we can see that TAALK has more individual
flows that take a longer time to complete (~1s).

VI. CONCLUSION

We have introduced TAALK, a system where load balancers
are aware of endpoint server loads. Load balancers in TAALK
send syn packets to two servers (determined by two hash
functions). A connection is then established with whichever
server sends back an Ack packet first (aka. the faster server
with presumably a lower load). We evaluated TAALK by
implementing it in CypherPath and comparing flow completion
time with Maglev (which picks endpoint servers randomly).
Our results show that TAALK and Maglev have similar
individual flow completion times for smaller loads. For larger
loads, the average individual flow completion time for Maglev
is shorter as it benefits from lower network overhead, however

Fig. 10. The individual flow completion time distribution for Maglev and
TAALK under load 82. There is a Maglev outlier at ~15s.

Fig. 11. The individual flow completion time distribution for Maglev and
TAALK under load 83.

Fig. 12. The individual flow completion time distribution for Maglev and
TAALK under load 93.

the tail latency is quite high for Maglev compared to our
implementation. Therefore, our solution successfully decreases
the job completion time by having up to 30 times smaller tail
latency.

VII. FUTURE WORK

We suggest running more extensive simulations using
CypherPath, with more endpoint servers and changing the
traffic by sending flows one at a time as well as simultaneously.
We may be able to see higher improvements for TAALK
and Maglev on larger scale simulations. Another way we
can evaluate our implementation is by looking at the load
of endpoint hosts. We would like to graph the loads of each
endpoint host to see if the load distribution is more even in
TAALK compared to Maglev.



6

To further improve our design, we can have the two endpoint
servers that are picked communicate with each other. For
example, if the load balancer sends a syn packet to server
i and server j, i and j can send each other their corresponding
loads, as shown in Figure 13. The server with a higher load
can simply drop the syn packet. In this design, the endpoint
servers also have to know the two hash functions so that
when they receive a packet, they can compute which other
server received the same packet. This design increases the
computation necessity of the endpoint servers, however may
decrease the network load overhead as it will stop the other
endpoint from continuously sending syn+ack to the user.

Fig. 13. Endpoint server i and endpoint server j sending their respective loads
to each other.

REFERENCES

[1] D. E. Eisenbud, Maglev: A fast and reliable software network load
balancer., 2016.

[2] P. Patel, “Ananta: Cloud scale load balancing.” ACM SIGCOMM Com-
puter Communication Review, vol. 43, no. 4, 2013.

[3] “A10 Networks AX Series.” [Online]. Available: http://www.
a10networks.com.

[4] “Kemp.” [Online]. Available: http://www.kemptechnologies.com/
[5] J. Dean and L. A. Barroso, “The tail at scale.” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.
[6] M. S. West, TCP/IP Field Behavior, 3 1748.
[7] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High

Performance.” RFC Editor, 1992.
[8] “Mininet,” 2019. [Online]. Available: http://mininet.org/
[9] “OMNeT++ Discrete Event Simulator,” 2019. [Online]. Available:

https://omnetpp.org/
[10] “INET Framework,” 2019. [Online]. Available: https://inet.omnetpp.org/
[11] “Cypherpath,” 2019. [Online]. Available: https://www.cypherpath.com/.


